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The loss of animal habitat and the greater use of forests by humans 
in various parts of the world have increased the conflict between humans and 
wildlife, especially for those animals with geographically large home ranges. As 
a result, much effort has gone into preserving a network of reserves of the last 
remaining prime habitat. Biologists, however, have realized that these areas 
alone are not sufficient to sustain populations and that the multiple-use regions 
that surround these core areas are essential for species’ survival (Smith, Ahearn, 
and McDougal 1998). While the concept of multiple use is attractive, finding the 
right balance between competing uses is difficult or impossible without a com-
putational framework in which to analyze these competing uses. The advent of 
object-based geographic data structures has given scientists such a framework 
and has spawned a number of dynamic individual-based models for analyzing 
the interaction of animals with their environment. One of the most difficult chal-
lenges associated with these models is the simulation of movement and the rela-
tionship between movement and behavior. Various analytic models have been 
proposed, and implementation of state-based movement has been designed using 
knowledge from domain experts. With the recent use of GPS collars for tracking 
animals, scientists now have quantitative information on the nature of animal 
movement. This quantitative data offers an unprecedented opportunity to better 
understand the relationship between an animal’s state and its behavior at differ-
ent spatial and temporal scales. The findings from these analyses can be used to 
calibrate and test the individual-based object models in an effort to understand 
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the short- and long-term consequences of geographically specific management 
proposals and practices. This chapter explores these issues in the context of the 
tiger as a prototype for modeling the interaction between humans and animals in 
the wild.

Over the past thirty years, there has been significant emphasis on establish-
ing protected areas for conservation of the best remaining habitat. However, 
for keystone species like tigers, Panthera tigris, which often require large geo-
graphic areas for their survival, these protected areas may not be enough. Studies 
have shown that protected areas only account for 17–25% of all tiger habi-
tat and that 75–83% of tiger habitat is in multiple-use forests with significant 
human activity (Smith, McDougal, and Sunquist 1987, Wikramanayake et al. 
1999). The concept of multiple use is an often-cited solution by policy makers 
for balancing human activities in forests with conservation needs. However, the 
development of a quantitative framework for balancing the various needs in a 
multiple-use forest is in its early stages (Ahearn et al. 2001). Additionally, infor-
mation on human–animal interaction is limited, especially for large carnivores 
like tigers (Kenney et al. 1995, MacKinnon, Mishra, and Mott 1999). In fact, 
resource selection by individual animals, a prerequisite for understanding this 
interaction, is notoriously difficult (Garshelis 2000) and has only recently been 
approached within an analytic framework (Franke, Caelli, and Hudson 2004, 
Jonsen et al. 2003, Brillinger et al. 2004). The fundamentals of animal movement 
and its relationship to behavior are the subject of this discussion. To provide 
context for this discussion, the movement and behavior of the tiger (Panthera 
tigris) will be examined in the context of the new analytic frameworks.

MODELING MOVEMENT AND BEHAVIOR OF ANIMALS

Early models for animal movement employed random walk models (Brownlee 
1911) and diffusion models (Dobzhansky and Wright 1943). However, these 
models assumed spatial isotropy of movement and were considered too simple 
as a general principle of animal movement (Turchin 1998).  Dice and Howard 
(1951) and Skellum (1951) examined dispersal movements to calculate neigh-
borhood size. Meta-population models proposed by Levins (1970) extended 
Wright’s shifting-balance theory by creating an implicit spatial structure among 
populations. Hanski (1991) and McCullough (1996) extended metapopu-
lations to include spatially explicit and individually based realistic models 
of animal movement among subpopulations that have been used to exam-
ine the effects of fragmented habitat connected by corridors. Siniff and Jessen 
(1969) were the first to realistically simulate animal movement and empha-
size the importance of space as a medium for ecological interaction. Turchin 
(1998) proposed four general types of movement by animals. They include 
simple random walk, random walk with directional persistence, random 
walk with directional bias, and random walk with persistence and directional 
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bias.  Individual-based movement models (IBMMS), which have been widely 
adopted by ecologists, use these principles of movement to model individuals 
and their interaction with each other and their environment. An example of a 
spatially explicit individual-based model is TIGMOD (Ahearn et al. 2001). It 
used general principles of movement and behavioral information from tiger 
field studies to model the interaction between tigers and humans and to ana-
lyze tiger survivability given different levels of human interaction and prey 
abundance and varying management practices. 

With the advances in GPS, there is now a plethora of data on animal move-
ment at very high spatial and temporal scales (Moen et al. 1996. Schlecht et 
al. 2004). This data has resulted in phenomenological studies that describe the 
pattern of habitat use (Merrill 2000, Blake et al. 2001) and has been used by 
a limited number of researchers to develop spatio-temporal models to predict 
movement. Some of the models have used stochastic differential equations cali-
brated from the GPS data to simulate animal movement (Brillinger et al. 2004), 
while others have used Markov models to infer the behavior and sequences 
from GPS data and to generate movement based on the state probabilities, 
state transitions, and state observations (Franke, Caelli, and Hudson 2004, 
Jonsen et al. 2003). At issue with respect to these quantitative models is how 
well they capture the complexity of the movement and behavior of individuals 
as it relates to the environment in which they move, the other individuals with 
whom they interact, and their own geographic strategies for resource usage. 

At this point, it may be useful to distinguish between an animal’s state and its 
behavior. We use state to define an animal’s physiological condition (e.g., its 
age, whether in estrus, pregnant, hungry, alive), and behavior is an animal’s 
actions in response to its state and its environment. 

A CONCEPTUAL MODEL FOR TIGER BEHAVIOR

While the acquisition of high-resolution spatial and temporal information 
regarding animal movement is a recent phenomenon, a wealth of behavioral 
information has been acquired from field studies over the years that has led 
to an understanding of the relationship between behavior and movement at 
coarse spatial and temporal scales. From these studies, conceptual models for 
behavior have been developed which describe general strategies for resource 
usage, mating, hunting/foraging, and home-range delineation. In the following 
discussion, we will describe a conceptual model for the tiger.

Tiger behavior and movement

Our conceptual model for tigers is based on the field research of Smith (1993), 
Smith, McDougal, and Sunquist (1987), Smith, McDougal, and Miquelle 
(1989), Smith and McDougal (1991), Smith, Ahearn, and McDougal (1998), 
Seidensticker and McDougal (1993), Sunquist (1981), Karanth and Sunquist 
(1995), Chundawat, Gogate, and Johnsingh (1999), and Miquelle et al.(1999) 
that provides detailed information on predatory, reproductive, territorial, and 
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dispersal behavior. Each of these behaviors can be further subdivided based on 
an animal’s state. For example, there are a variety of behaviors that fall under 
reproductive behavior that are a function of an animal’s changing reproductive 
state. Scent marking intensifies during a female’s pre-estrus state, and she grad-
ually marks throughout her entire home range. Once estrus occurs, her move-
ment becomes more rapid and continuous as she begins repeated calling, day 
and night, to help the resident male to find her. Thus, we have a set of differ-
ent behaviors, each in response to a changing physiological state. Each behav-
ior has a specific movement pattern associated with it, which can be described 
by rate of movement and degree of directional persistence. 

Tiger home ranges are established based on resource availability and sex. 
Home ranges tend to be fuzzy boundaries that are sometimes breached by 
small forays beyond a territorial boundary or in response to changing resource 
needs or conditions. Male tiger home-range spans vary from 35–150 km2 in 
the Royal Chitwan National Park (Smith, McDougal, and Sunquist 1987) 
to  >800 km2 in the Russian far east (Miquelle et al. 1999). The male home-
range circumscribes 2 to 7 female home ranges. Prey are killed on average 
every seven days if the animal is at least 200 kg (i.e., Cervus unicolor) but can 
be of higher frequency if the prey size is smaller. The tiger will remain near its 
kill for 2–3 days and begin hunting again between 3 and 5 days after it last 
fed (Sunquist 1981, Chundawat, Gogate, and Johnsingh 1999). Females with 
cubs will increase their frequency of hunting until cubs are 16–17 months 
old, at which time their rate of killing has doubled or tripled. Male tigers visit 
their females three to five times a month. If the female is fertile, the male will 
remain to mate with her for 2 to 3 days and copulate over 100 times. If not, he 
may just spend a few minutes with her and move to the next female. Females 
become fertile every 20–30 days on average and give birth to 2–5 cubs after 
102 days. Cubs remain with their mother until they are 18–22 months old.

Movement by tigers can be characterized by the direction and distance a tiger 
travels per unit time and is functionally dependent upon its state. A male tiger 
has an external bias to its direction when moving to the next hunting area or 
visiting the next female. Once a male enters a female’s home range, his move-
ment will slow as he seeks his mate, and his movement may be characterized 
as a random walk. If he is within 1 kilometer of the female, he is likely to roar 
and move directly towards her. If she is not fertile, he assumes a random walk 
through her home range until he meets her or moves on to his next female. If 
he is hunting, he assumes a random walk once he enters his hunter area and 
searches for prey. After prey is killed, the tiger will remain near the kill until it 
is finished.

Human interaction and cattle grazing

Human interaction with tigers takes various forms from poaching of tigers and 
their prey, to loss of habitat, or poisoning of tigers by villagers whose cattle 
have been killed by tigers. Human behavior toward tigers is complex. In mul-
tiple–use forests, one of the primary human uses for these forests is cattle graz-
ing. The problem with cattle grazing is that it cascades through the ecosystem 
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to eventually affect tiger viability. Grazing reduces regeneration, resulting in 
forest degradation and eventually forest fragmentation. This deterioration of 
habitat quality reduces the natural prey base and increases the likelihood that 
a tiger will kill domestic prey. If a sufficient number of prey are killed within a 
given geographic region, a domestic carcass will be laced with an insecticide by 
the owner, and when the tiger comes back to finish its meal, it will be poisoned 
and die. The motivation to poison tigers is dependent on the number of kills a 
tiger makes in an area and the number of kills in turn depends on local grazing 
pressure. At higher domestic stocking rates, a tiger is more likely to remain in 
the area killing cattle.  

An important management question concerning tigers and other large area-sen-
sitive predators is: What is the probability of dispersal across a real, human-
dominated landscape? (Smith, 1993). Estimating the probability of dispersal 
is a vexing problem that field biologists have not been able to address because 
the dispersal of a single individual is too rare an event to hope to observe, 
even with intensive monitoring. However, it is not difficult for field biologists 
to observe and document the behavior of a tiger living in poor-quality habi-
tat typical of a potential habitat corridor and then use this behavior or sets of 
behavior to model an individual animal’s movement through a corridor. Such 
modeling also can help managers explore the effects of various management 
actions designed to increase the likelihood of successful dispersal.

TIGMOD REVIEW

Introduction
The principles behind individual-based models (IBMM) are that each indi-
vidual is an autonomous entity that is behaviorally and physiologically dis-
tinct and that interaction among individuals is localized (Franke, Caelli, and 
Hudson 2004). GIS software constraints until recently have stymied efforts to 
create robust, extensible, geographically based IBMM (Raper and Livingstone 
1995, Westervelt and Hopkins 1999, Ling 2000). With the advent of object-
oriented (OO) geographic systems in the last ten to fifteen years, these con-
straints have disappeared. The critical difference from previous generations 
of GIS software tools is that OO systems make the object the unit of analysis, 
not its geometry. The result of this paradigm shift is that location and time are 
treated as explicit properties of an object, permitting the frequent updating of 
space–time attributes. It also results in the creation of an autonomous individ-
ual that can interact in a unique fashion with other individuals (Ahearn et al. 
2001).  In the case of the tiger in TIGMOD, the tiger objects have two geom-
etry fields, location (a point) and home range (a polygon). TIGMOD was cre-
ated to give an analytic framework for the enormous amount of behavioral 
data that has been collected for tigers in order to better understand its behav-
ioral dynamics and to demonstrate that an IBMM could be used effectively to 
analyze the proper balance to strike in multiple–use forests. It was designed, 
however, not with a specific analytic task to be performed but with the goal of 
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capturing the patterns of behavior and interactions needed to model the sys-
tem. Once these aspects are correctly captured, questions concerning changes 
to the system could be answered (Ahearn et al. 2001). 

Key features of TIGMOD are that it supports mobility of objects, variable 
spatial attributes and temporal resolutions, interaction with other individual 
objects, the creation of new individuals, and the propagation of change in the 
state of one object through the system in space and time to affect all related 
objects. Model inputs include: an array of information on movement (rate and 
direction) as a function of ten unique states of the tiger, a three-probability 
estimate on the likelihood of tiger poisoning, a rate of hunger, a probability of 
hunting success, and an input for temporal resolution (fig. 1).

2000 m/day
400 m/day
1500 m/day
3000 m/day
1500 m/day
1000/m/day
1000/m/day
800 m/day

Time
0.5

Movement Rate

Movement direction

2000 m/day
400 m/day
1500 m/day
3000 m/day
1500 m/day
1000 m/day
1000 m/day
800 m/day

“random”
feeding
hunting

male mating outside
male mating inside

female fertile
female fertile

female pregnant
female with cubs

“random” persistence
male mating bias

0.75
0.85

Hunger
hunger index trigger hunting
hunger index increase daily
stress index increase daily

60%
30%

3.33%

0.75
0.25

domestic prey
wild prey

Hunting success

Probability of poisoning

1 other cattle killed <1km
2 other cattle killed <1km
3 other cattle killed <1km

4+ other cattle killed < 1km

0.05
0.10
0.25
0.50

Kill forgotten
days after which villagers

forget about the kill
60

days per move

Figure 1 :Input parameters for TIGMOD with default values (from Ahearn et al. 2001).

Data model
Tiger and prey are represented as objects that have physical, behavioral, and 
geometric characteristics, all being fields in the description of the respective 
object. Age, weight, and whether alive are examples of physical characteristics; 
feeding, hunting, mating, and giving birth are examples of behavioral charac-
teristics, and location and home range are examples of geometric character-
istics. Class hierarchies were created with animal as a super class, prey and 
tigers as subclasses, wild and domestic prey as subclasses of prey, and male and 
female as subclasses of tiger. All methods were inherited from the super classes 
above any subclass. Closely coupled objects are modeled with relational joins. 
A male tiger can have one or more females in its home range, females can have 
two or more male and female cubs, and tigers can be hunting 0 or 1 prey.
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TIGMOD is a dynamic model that is driven by the tiger’s internal state and 
its relationship with its environment. In some instances, states are dependent 
on the environment (e.g., a male tiger stays longer with a female if she is fer-
tile) and sometimes they are not (e.g., a female becomes fertile every ~20–30 
days). A change in time drives the model affecting state-based relationships 
(e.g., relationship between hunger and desire to hunt), functional events (e.g., a 
female becomes pregnant if she is fertile and within close proximity of a male) 
and scheduled events (e.g., she gives birth ~102 days after conception (fig. 2). 
These in turn determine the pattern of tiger movement (Table 1). Movement is 
characterized by rate and direction. Rate and direction of movement is func-
tionally dependent on state. Distance traveled in a time step is modeled as a 
chi squared random variable. Direction is modeled as four different behaviors: 
direct movement when the tiger is going directly to a spotted prey or toward 
a female’s calling; directed movement when a tiger heads back toward its kill; 
random movement with a directional bias when a tiger cruses its home range; 
and random movement with an external bias when a male heads toward a 
female home range. 

Change object state change behavior___

Hunting f(event) turns red, search for prey, kill prey

Mating f(event) move toward female, make female pregnant

Feeding f(event) stay near prey, reduce hunger
Dead f(poison/stress) turn black

Stress f(hunger level) increase movement, die

Stress f(hunger level) increase movement, die
Dead f(poison/stress) fire kill cubs trigger, turn black

Fertile f(schedule) change movement rate, turn cyan

Pregnant f(male prox.) change movement rate, turn blue

With cubs change movement rate, increase rate of hunger

Hunting f(hunger) search for prey, kill prey, turn red

Feeding f(kill) stay near prey, reduce hunger

Dead f(kill) turn black, fire poison trigger

Poison f( dead cattle turn red
    within 1 km radius)

Dead f(kill) turn black

gets older
gets hungry

gets stressed?
time to visit next female?

gets older
gets hungry

gets stressed?
gets pregnant?

time to be fertile/not?
Time to give birth?

Domestic prey

Wild prey

female tiger

male tiger

Time

Figure 2: Diagram of the dynamic interactions in TIGMOD (from Ahearn et al. 2001).
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Movement Characteristics with default values

Behavior Rate (distance per day)
= mean rate of movement
= standard deviation of movement 

rate

Direction 
= mean direction of movement = standard 

deviation of movement direction

Looking for prey 2 random variable ( = 1500 meters,
= 1500 meters)

Random with bias: moves in a random direction 
with a probability of bias of 0.75 in a direction 
selected from a normal random variable with  

= direction of prey and = 10 degrees

Found prey Moves to the location of prey Moves in the direction of the prey

Feeding 2
 random variable (  = 400 meters,
= 400 meters) 

Movement  is directed to prey location as 
selected from a normal random variable with 

 = direction to prey and = 5 degrees

“Random” 2
 random variable (  = 2000 meters, 
= 2000 meters) 

 Random with persistence: moves in a random 
direction with a probability of persistence of 0.75 
in a direction selected from a normal random 
variable with = previous direction and 

= 10 degrees.

Mating (male): outside 
female domain

2 random variable (  = 3000 meters, 
= 3000 meters) 

Random with directional bias: moves in a 
random direction with a probability of bias of 
0.85 in a direction selected as normal random 
variable with = direction of female and 

= 10 degrees

Mating (male): inside 
female domain

2
 random variable (  = 1500 meters, 
= 1500 meters) 

Random with directional bias: moves in a 
random direction with a probability of bias of 
0.85 in a direction selected as a normal random 
variable with = direction of female and 

= 10 degrees.

Mating (male): within 
400 meters of female

Moves distance to female Moves in the direction of female

Fertile (female) 2
 random variable (  = 1000 meters, 
= 1000 meters) 

 Random with persistence: moves in a random 
direction with a probability of persistence of 0.75 
in a direction selected from a normal random 
variable with = previous direction and 

= 10 degrees.

Pregnant (female 2
 random variable (  = 1000 meters, 
= 1000 meters) 

 Random with persistence: moves in a random 
direction with a probability of persistence of 0.75 
in a direction selected from a normal random 
variable with = previous direction and 

= 10 degrees.

With cubs (female) 2 random variable (  = 800 meters,
= 2000 meters) 

 Random with persistence: moves in a random 
direction with a probability of persistence of 0.75 
in a direction selected from a normal random 
variable with  = previous direction and 

= 10 degrees.

Table 1: Movement characteristics for different tiger behavior (from Ahearn et al. 2001).

Human interaction is modeled for one aspect of cattle grazing at the for-
est boundary: the likelihood that a cow killed by the tiger will be poisoned 
by villagers. The first aspect of interaction deals with the likelihood of a cow 
being killed by a tiger based on the difficulty of killing. This is determined by 
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the method for grazing by the villagers. In some instances, cows are guarded, 
resulting in a lower probability of kill, and other village groups just send their 
cows into the forest unguarded, resulting in a higher probability of kill. The 
other two factors that determine the likelihood of poisoning are probabilities 
based on the number of kills within a geographic region (e.g., 1 km radius) and 
the length of time villagers are annoyed about the kill. All probabilities related 
to all three factors are user inputs and can change depending on geographic 
location and the level of education of the villagers. For instance, if the villagers 
know that tigers bring in tourist money, then they may be more tolerant of cat-
tle kills and the probably of poisoning is reduced.

TIGMOD can be run at different time-step increments and for different dura-
tions. Ahearn et al. (2001) also ran the model with differing amounts of 
domestic and wild prey densities in order to understand tiger viability.

MODELING COMPLEXITY: A NEW SOURCE OF DATA

TIGMOD was developed as an IBMM using expert knowledge of the relation-
ship between the tiger’s state and its relationship to other tigers and its envi-
ronment. While this model proved effective in simulating tiger behavior and 
tiger viability as a function of different management conditions, it has several 
limitations: (1) it wasn’t calibrated with spatio-temporal geographic informa-
tion for tiger movement, (2) it made significant assumptions about the nature 
of tiger movement given different behavioral states, and (3) it modeled a subset 
of tiger behavior.

The availability of high-resolution spatial and temporal information from GPS 
collars on animals provides us with a new source of spatio-temporal data and 
enables us to understand better the relationship between an animal’s state and 
its behavior at different spatial and temporal scales. As discussed above, there 
have been a number of studies that have used GPS to examine the pattern of 
habitat use (Merrill 2000, Blake et al. 2001) and a limited number that have 
used it to measure quantitatively the nature of movement and its relationship 
to behavior (Brillinger et al. 2004,  Franke, Caelli, and Hudson 2004, Jonsen 
et al. 2003). The critical question is: How well do these models capture the 
complexity of the movement and behavior of individuals as they relate to the 
environment in which the animals move, the other individuals with whom they 
interact and their own geographic strategies for resource usage? For this dis-
cussion, we will concern ourselves with the Hidden Markov Model (HMM), 
as this type of model has the interesting properties of imputing behavior and 
movement characteristics from a spatio-temporal signal although it is recog-
nized that other models (e.g., Brillinger et al. 2004) show equal promise.
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HMM

Hidden Markov Models (HMM) are in a class of stochastic signal models that 
characterize the statistical properties of a signal. They are an extension to the 
idea of discrete Markov chains, which characterize the probabilities of state 
transition sequences. In Markov chains, each state relates to an observable, 
physical event. In contrast, in HHM the observation is a probabilistic function 
of the state, which results in a doubly stochastic process where one process is 
observable and one is hidden. The ergodic  HMM assumes that every state can 
be reach from any other state (Rabiner et al. 1989).

An HMM is characterized by N, the number of states in the model; M, the 
number of distinct observations; A, a state transition matrix; B, the observa-
tion probability distribution; and , the initial state distribution.  HMM is 
often described by:

���� , A, B).  

The three problems for HMMs include: 1) generating estimates of observations 
and state sequences, 2) determining the most likely state sequence given and 
an observation sequence, and 3) updating the model given new observation 
data (Rabiner et al. 1989, Franke, Caelli, and Hudson 2004).

For theoretical reasons, good initial estimates of are necessary to ensure 
optimal model parameterization, with particular importance given to good 
initial estimations of B. There are various techniques for making estimates, 
including manual segmentation of observation sequences, maximum-likeli-
hood segmentation with averaging, and segmentation with k-means clustering 
(for a definitive review of HMM, see Rabiner et al. 1989). As we discuss below, 
selecting the number of states for the A matrix often requires significant infor-
mation on the state and associated behavior of the animal being modeled.

CARIBOU EXAMPLE OF HMM

Franke, Caelli, and Hudson (2004) implemented a HMM for caribou using 
GPS data acquired every 15 minutes for 12 caribou. They examine three “hid-
den states” (A matrix, as probabilities) feeding, bedding, and relocating, 
which typically occupy over 90% of the caribou’s activity. They selected dis-
tance between locations and turn angle as observations that encapsulate move-
ment as related to behavior. Distance was assigned to four intervals: stationary, 
short, medium, and long; turn angle was assigned four categories: ahead, left, 
right, back (the B matrix, as probabilities). 

They compared their model with a traditional time-series method and found 
much greater PC (percent correct) and significantly less AAD (average abso-
lute difference) for the HMM when used to predict an observation sequence 
from . Perhaps more important, the state transition probability matrices (A 
matrix) showed that caribou tended to forage for short periods and bed and 
relocate for longer periods and that the animals were most likely to bed after 
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relocating and forage after bedding. Both of these behaviors of movement and 
transition are support by field observation. Through examination of the tran-
sition matrices, Franke, Caelli, and Hudson (2004) also were able to deduce 
the differing land-use strategies of the individual caribou. In summary, they 
believed their model was very effective for predicting behavior but recognized 
that resource selection is scale dependent and their implementation of HMM 
avoided integration across ecological scales. Nevertheless, Franke, Caelli, and 
Hudson (2004) have made a strong argument for using HMM for the deriva-
tion of behavioral states and generating observation sequences for the wood-
land caribou.

HMM FOR TIGER MODELING

The conceptual model for the tiger described above reveals the complexity of 
the relationship between the tiger’s state and its behavior. In considering the 
use of HMM for imputing tiger behavior from movement and in generating 
movement from , several issues are at hand: Can a tiger’s movement be 
described by a first-order Markov process? How are different temporal scales 
accommodated? Are there state changes that result in the generation of differ-
ent movement rates and patterns for the same behavior? Are certain behaviors 
and therefore movement patterns dependent on the state of other entities?  

Can a tiger’s movement be described by a first-order Markov process?  A first-
order Markov process assumes that the current state is wholly dependent on 
the previous state. This is not as limiting as it sounds as dependencies propa-
gate through the model. However, not all behaviors are first order. There is a 
significant amount of research that indicates that animals may possess a cog-
nitive map of their environment (Poucet 1993, Bennett 1996) and that ani-
mals may use that map to develop geographic strategies of resource use. Our 
own preliminary analysis of GPS data obtained in the Royal Citwan National 
Forest in Nepal indicates that the tiger may have a hunting strategy that min-
imizes disturbance between hunts and maximizes usage of her home range by 
sequencing hunts in different geographic regions of her home range over a one-
month period (fig. 3). The strategy may also be part of her establishing and 
maintaining her home range.
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Figure 3:  Hypothesized hunting/kill areas

Are there state changes that result in the generation of different movement 
rates and patterns for the same behavior?  For the tiger, the answer is yes. 
When a tiger’s state starts to change from satiated to hungry, her behavior 
becomes that of a hunter. The rate at which she becomes hungry and her strat-
egies for hunting may be a function of her reproductive state. When she is 
pregnant, she gets hungrier sooner. When she has cubs, her hunting increases 
until she is essentially hunting continuously when the cubs are 12 to 18 
months old. Between the cubs’ birth and when they are two months old, her 
home range is reduced by 50% (Smith, 1993). Thereafter, she carries or leads 
the cubs from place to place until they are big enough to follow her and assist 
in the hunt.

Are certain behaviors and therefore movement patterns dependent on the state 
of other entities?  The answer for the tiger is yes. The clearest example is the 
behavior of the male toward his females. If a visited female is not fertile, he 
may spend only minutes with her. If she is fertile, he will spend several days.

How are different temporal scales accommodated?  Tigers operate at numer-
ous temporal scales. Hunting occurs at 5–7 day intervals, home range traversal 
occurs every 24–28 days, and dry and wet season variation occurs biannu-
ally. Males also visit their females periodically. A model that truly mimics tiger 
behavior must operate at these multiple temporal scales.

DISCUSSION

The above analysis suggests that it may be difficult to use a single HMM to 
incorporate the complex states and corresponding behaviors of a tiger. Perhaps 
multiple HMMs, which correspond to different states, might be more appro-
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priate. However, determining these states is no small task. It requires detailed, 
close-range, behavioral observations, information on rates, variability, and 
directional persistence of movement, and observation of anecdotal data such 
as presence of a kill or tracks of another tiger. Together, this information pro-
vides clues to an animal’s behavioral rules. For example, finding a kill and 
determining the GPS time when the tiger reached the kill site allows one to 
infer the behavior (hunting) prior to the kill time. Similarly, behavior post feed-
ing can be inferred to be either territorial patrolling or long-range movements 
designed to take a tiger to another potential hunting site. 

To obtain behavioral data needed to model movement, it is important not to 
disturb an animal when making continuous close-range observations. However, 
in dense vegetation sound attenuates rapidly, and it is often possible to 
approach a tiger close enough to hear the crunching of bones as it feeds on its 
prey or the sharp copulatory growls a female makes while mating. Following 
an animal closely provides opportunity to gather a variety of data from which 
an animal’s behavioral state may be assessed. For example, patrolling can be 
distinguished from long-distance movements between hunting localities based 
on data on rates of movement versus rates of scent marking and inspection 
of scent marks which can determined by observing tracks going up to scent 
marks (Smith, McDougal, and Maquelle 1989). Having both the behavioral 
information from following a tiger and the GPS data, which provides quan-
titative information on movement, will enable us to evaluate the number and 
type of HMMs that may be need to model tiger movement. It will also help us 
to calibrate the HMM by determining the number of states needed for the A 
matrix, the initial approximations for the B matrix, and estimates of . 

This chapter has reviewed individual-based models as a framework for under-
standing the interaction of animals and humans in multiple-use forests. It as 
also examined the potential for using GPS data to calibrate these models and 
to provide new insight into the relationship between animal movement, behav-
ior, and an animal’s physiological state. TIGMOD, an individual-based model 
for emulating the behavior of tigers in multiple-use forests was a first attempt 
to capture different movement patterns in response to behavior and physiolog-
ical states. This conceptual model has begun to capture some of the complex-
ity of animal movements. Statistical models such as the HMM can strengthen 
the movement dynamics of individual-based models, but there are limitations 
to the use of HMM. Stochastic events such as the appearance of another tiger 
(e.g., an estrous female, a male challenger) can alter the matrices describing  
the HMM.

What is clear is that modeling this complexity is a key challenge if we are to cre-
ate individual-based models for animals that can be used for understanding both 
resource allocation and the interactions between humans and animals in mul-
tiple-use forests. The key to making advances is a close reiterative interaction 
between modeler and field biologist. For an endangered species where sample 

CONCLUSIONS
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sizes are limited, management problems are site specific, and there simply is not 
time to examine the outcome of experimental management scenarios, modeling 
may be the only alternative for exploring management options.
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